
On the Ranking of Expedia Search Results using
LambdaMART

Thomas Bellucci1[2710299], Qingzhi Hu2[13167200], and Chih-Chieh Lin1[2700266]

1 VU University, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
{t.bellucci, c2.lin}@student.vu.nl

2 University of Amsterdam, Spui 21, 1012 WX Amsterdam, The Netherlands
qingzhi.hu@student.uva.nl

Group 55 DMT-2021

1 Introduction

This report presents the results of our research project on hotel search ranking.
Over the last two decades, online travel agencies (OTAs) have increasingly be-
come an important channel for the booking of hotels. Booking websites, such as
Expedia, Trivago and Booking.com, which allow users to explore hotel options
through online search, have now largely supplanted traditional, brick-and-mortar
travel agencies and account for nearly half of travel sales worldwide [16].

For OTAs, service quality is paramount; when a search yields relevant hotel
results, an OTA will maximize its chances of securing a booking [6]. In light
of this, the Personalize Expedia Hotel Searches competition was organized on
Kaggle in 2013. In this competition, teams were tasked with predicting which
hotels shown in Expedia’s search results were most likely to be booked by a user
given their search query; this could then help Expedia organize, or sort, their
search results more appropriately. Teams were provided with a dataset of search
queries, results and purchasing information; from this, a model could then be
built to sort hotels in novel search results based on their likelihood of booking.

In this report we present our solution to the Kaggle competition. We frame
the problem as a learning-to-rank (LTR) problem, where the task is to sort hotels
presented in the search results by their predicted likelihood of securing a book-
ing. To achieve this, a set of features were identified from the competition data
following a literature review and data analysis. On this data, a LambdaMART
model was then trained. In what follows we will elaborate on our process, data
analysis, modeling and evaluation, and reflect on the results obtained.

2 Business Understanding

Matching users to hotel listings is critical in the travel industry as inappropriate
rankings may cause relevant hotels to be missed. Moreover, as shoppers are
shifting between booking sites, rating hotels based on their competitiveness for
the customer gives a travel agency the best opportunity of securing a deal.

Before proceeding with model building, a literature review was carried out
to identify features predictive of booking, and solutions to the 2013 competition
were examined to identify directions for modeling and feature engineering.

2 Author et al.

2.1 Literature Review

Recent studies have indicated that the information provided by search impres-
sions greatly affects booking behavior. In particular, a meta-analysis by Dolnicar
found that booking behavior is largely dictated by characteristics inherent to
hotel properties themselves including the quality of service (quantified through
reviews), location, reputation, name familiarity and price of the accommodation
[4]. However, besides qualities of the hotels themselves influencing the customers’
purchasing decisions, it was found that website and search engine characteristics
may affect booking behavior as well. According to recent findings, the quality
and completeness of search impressions positively contributes to the customer’s
purchasing decision [11]. Moreover, the position of hotel impressions in the re-
sults was found to affect click-through rate, increasing the likelihood of booking
for hotels presented early in the results [6].

2.2 Competition Solutions

Although the Kaggle competition ended in 2013, many details of its submissions
have been made public since. The unofficial first place, held by team ’Commendo’
[17], was an ensemble of models which included the LambdaMART model from
RankLib [3], gradient boosting machines and neural networks, and resulted in
a score of 0.54071 on the NDCG@38 metric (see section 5.3.). The solution
employed all numerical features and described each hotel property by additional
various statistics, including the mean, median and standard deviation of several
features. These statistics were computed over the training and test set to improve
the stability and generalizability of the estimates.

The official winning solution was provided by Owen Zhang [1, 17] who used
an ensemble of gradient boosting machines optimizing the NDCG metric. All
features provided in the dataset were used along with the mean of the numerical
features computed per hotel property, search id and destination. Although a
hotel’s position on the result page was only available in the training set, it was
incorporated as an historical feature allowing it to be used for the test set;
precisely, the position was based on the hotel property id, the destination, the
month of booking and the hotel position in previous and next search. He also
introduced various composite features to better describe price differences [1].

The first place solution removed outliers of the numerical features, imputed
missing data with negative values and applied down-sampling of no-click records
which improved training time and performance [1]. For dealing with categorical
features, so-called EXP features were computed to transform them into a numer-
ical space; specifically, computing for each value of the categorical feature the
mean of the booking and clicking feature (disregarding the current observation).

The second place solution was built on the insight that users tend not to
favor hotels with missing information in their impressions [1, 11]; in light of this,
missing values in search impressions were imputed with worst case values. As
travel expenses may fluctuate throughout the year and different destinations
generally vary in price, features were normalized with respect to the property

On the Ranking of Expedia Search Results using LambdaMART 3

Table 1. Excerpt of the training data. For brevity, not all attributes are shown.

Search query Property characteristics
Price

competitiveness
Target

search
id

date time
room
count

adults
count

prop
id

review
score

promotion
flag

position
price
usd

comp1
rate

comp8
inv

click
bool

booking
bool

81578
2012-11-01
00:08:29

1 ... 2 93974 4.5 1 ... 12 195.00 NA ... 0.0 0 0

81578
2012-11-01
00:08:29

1 ... 2 133689 4.5 0 ... 2 179.00 NA ... 0.0 0 0

...

67044
2013-06-30
23:58:24

1 ... 3 39164 4.0 0 ... 4 149.92 0.0 ... 0.0 1 1

67044
2013-06-30
23:58:24

1 ... 3 32887 4.0 1 ... 8 179.08 0.0 ... 0.0 1 0

Table 2. General statistics of the training data.

Records Searches Groups

Total Records 4958347 Min. Results 5 Properties 129113

Total Searches 199795 Max. Results 38 Countries 172

Records Clicked (%) 4.47 Avg. Results 24.82 Destinations 18127

Records Booked (%) 2.79 Avg. Clicks 1.11 Visitor Countries 210

Searches No Clicks (%) 0.00 Avg. Bookings 0.69 Sites 34

Searches No Booking (%) 30.73

and search ids, destination, country and time of year. Wang considered multiple
modeling approaches, the best of which was found to be LambdaMART.

The third place solution, developed by the ’Binghsu & MLRush & Brick-
Mover’ team [12], trained multiple types of models, including support vector
machines, random forests, factorization machines and neural networks; models
were then combined using a listwise ensemble.

A team from Stanford University used collaborative filtering and several
traditional classification algorithms to predict clicking directly [9]. With ex-
tensive feature selection, the team obtained limited classification performance
(F1 = .38), showing how the classifier-based approach may not be appropriate
for the problem at hand.

3 Data Understanding

In order to gain a thorough understanding of the structure and quality of the
provided dataset and identify attributes predictive of booking, an exploratory
data analysis was conducted.3 As shown in Table 1, the dataset was provided
as a collection of time-stamped search results, each line of which representing
a combination of a search query with a specific hotel property that was part of
the results. Hotel properties were represented by a set of attributes, including its
ID, review score, star rating, price (in US dollars), location score and position
within the search results.4 Information regarding the query included the search
ID, date time, destination, length of stay, room count, number of adults/children

3 A test set, described in section 5.2, was held out as to not inflate evaluation statistics.
4 The data included two location scores; prop location score1 and prop location score2

4 Author et al.

Fig. 1. Box-plots of a selection of raw attributes

sr
ch

_id
da

te
_t

im
e

sit
e_

id
vi

sit
or

_lo
ca

tio
n_

co
un

try
_id

vi
sit

or
_h

ist
_s

ta
rra

tin
g

vi
sit

or
_h

ist
_a

dr
_u

sd
pr

op
_c

ou
nt

ry
_id

pr
op

_id
pr

op
_s

ta
rra

tin
g

pr
op

_r
ev

ie
w_

sc
or

e
pr

op
_b

ra
nd

_b
oo

l
pr

op
_lo

ca
tio

n_
sc

or
e1

pr
op

_lo
ca

tio
n_

sc
or

e2
pr

op
_lo

g_
hi

st
or

ica
l_p

ric
e

po
sit

io
n

pr
ice

_u
sd

pr
om

ot
io

n_
fla

g
sr

ch
_d

es
tin

at
io

n_
id

sr
ch

_le
ng

th
_o

f_
st

ay
sr

ch
_b

oo
ki

ng
_w

in
do

w
sr

ch
_a

du
lts

_c
ou

nt
sr

ch
_c

hi
ld

re
n_

co
un

t
sr

ch
_r

oo
m

_c
ou

nt
sr

ch
_s

at
ur

da
y_

ni
gh

t_
bo

ol
sr

ch
_q

ue
ry

_a
ffi

ni
ty

_s
co

re
or

ig
_d

es
tin

at
io

n_
di

st
an

ce
ra

nd
om

_b
oo

l
co

m
p1

_r
at

e
co

m
p1

_in
v

co
m

p1
_r

at
e_

pe
rc

en
t_

di
ff

co
m

p2
_r

at
e

co
m

p2
_in

v
co

m
p2

_r
at

e_
pe

rc
en

t_
di

ff
co

m
p3

_r
at

e
co

m
p3

_in
v

co
m

p3
_r

at
e_

pe
rc

en
t_

di
ff

co
m

p4
_r

at
e

co
m

p4
_in

v
co

m
p4

_r
at

e_
pe

rc
en

t_
di

ff
co

m
p5

_r
at

e
co

m
p5

_in
v

co
m

p5
_r

at
e_

pe
rc

en
t_

di
ff

co
m

p6
_r

at
e

co
m

p6
_in

v
co

m
p6

_r
at

e_
pe

rc
en

t_
di

ff
co

m
p7

_r
at

e
co

m
p7

_in
v

co
m

p7
_r

at
e_

pe
rc

en
t_

di
ff

co
m

p8
_r

at
e

co
m

p8
_in

v
co

m
p8

_r
at

e_
pe

rc
en

t_
di

ff
cli

ck
_b

oo
l

gr
os

s_
bo

ok
in

gs
_u

sd
bo

ok
in

g_
bo

ol

Attributes

0

20

40

60

80

100

M
iss

in
g

(%
)

Fig. 2. Proportion of missing values of each attribute in the data

and booking window.5 When available, competitor rates and historical customer
information were included as well. In total, the data set included 8 months of
searches, from November 1st, 2012, to June 30th, 2013.

In Table 2, various general statistics are shown for the data. Here, it can be
seen that the number of search results varied considerably between queries (from
5 to 38). Moreover, it shows that, on average, more than one property is clicked
on by a user (with a minimum of 1), yet frequently no bookings were made as a
result of a search (30.73%). Fig. 1 and Fig. 2 show the distributions of a subset
of attributes and their percentage of missing values; you can see that many of
the attributes (e.g. price usd) exceed their expected value ranges and often show
a long-tailed distribution of high values and outliers. As shown in Fig. 2, certain
attributes also contain missing data in the form on NaNs.

From the figures above, it can be concluded that the data in its raw form
presents some challenges. The first issue to address is the imbalance in the data.
As shown in Table 2, most search results were not booked or clicked, resulting in
an imbalance of negative (no-click) samples relative to positive (click) samples
in the data; however as we are dealing with ranking instead of classification and

5 Time between the search and the time of reservation.

On the Ranking of Expedia Search Results using LambdaMART 5

2012-11 2012-12 2013-01 2013-02 2013-03 2013-04 2013-05 2013-06 2013-07
Date

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f s
ea

rc
h,

 c
lic

k,
 b

oo
k

Click
Book

2012-11 2012-12 2013-01 2013-02 2013-03 2013-04 2013-05 2013-06 2013-07
Date

10000

12500

15000

17500

20000

22500

25000

27500

30000
Search

Fig. 3. Number of search queries, clicks and booking per day.

1 3 2 6 4 7 8 9 10121314151618192021222425262728293031323334353637381117 5 233940
Position

101

102

103

104

105

Nu
m

be
r o

f s
ea

rc
h,

 c
lic

k,
 b

oo
k

(lo
g) Search

Click
Book

1 2 3 6 7 4 8 9 12131410151819201621242526222728293031323334353637171123 5 383940
Position

Search
Click
Book

Fig. 4. Search, click and booking distribution over positions when (left) displayed sort
was random and (right) sort was made according to Expedia’s internal ranking.

only 4.47% of results were clicked, the common practice of down-sampling before
training would likely result in data sparsity and hence over-fitting.

Another issue to address is how to encode categorical attributes as apply-
ing simple one-hot encoding would be very memory-consuming, especially for
attributes with many possible values such as the destination id. Furthermore,
since the data contains reservations that have been made over the year, temporal
information may need to be accounted for (see Fig. 3)

In the data, a special attribute named random bool was present indicating
whether the returned results lists were sorted by Expedia’s internal ranking
algorithm or randomized. Since users are most likely to click on hotels early
in the results, this attribute may influence indirectly (through interaction) the
likelihood that hotels are clicked. Thus, one may need to pay attention to the
position bias even if the hotels are sorted in random order (see Fig. 4).

Lastly, some attributes contained a big portion of missing values and out-
liers. Missing values were especially noticeable in price competitiveness and user
history attributes (see Fig. 2); outliers in price-related attributes (see Fig. 1).

3.1 Univariate Attribute Analysis

In order to gain insight into the predictive value of the raw attributes, a ranking-
specific feature selection procedure was employed [5]; rankings were created
with respect to each attribute in the data which were in turn scored using the
NDCG@5 metric.6 Fig. 5 shows the result of this procedure relative to a random
baseline. In line with previous research, the position of the property within the

6 As some attributes may negatively correlate with booking, a single-attribute regres-
sion model was fit to allow for arbitrarily signed relations.

6 Author et al.

po
sit

io
n

pr
op

_lo
ca

tio
n

_s
co

re
2

pr
ice

_u
sd

pr
om

ot
io

n_
fla

g

co
m

p2
_r

at
e

_p
er

ce
nt

_d
iff

pr
op

_s
ta

rra
tin

g

co
m

p5
_r

at
e

co
m

p8
_r

at
e

co
m

p2
_r

at
e

pr
op

_b
ra

nd
_b

oo
l

sr
ch

_q
ue

ry
_a

ffi
ni

ty
_s

co
re

co
m

p7
_r

at
e

_p
er

ce
nt

_d
iff

Feature

0.16

0.20

0.24

0.28

ND
CG

@
5

cli
ck

_p
ro

b

bo
ok

in
g_

pr
ob

Fig. 5. NDCG@5 scores for raw attributes (left) and derived historical attributes
(right) relative to the random baseline (NDCG@5=.159). For brevity, attributes scoring
below baseline were left out. The NDCG metric is described in section 5.3.

results, its second location score and the price show to be most predictive of
booking. However note that, in isolation, most attributes are limited, outscoring
the random baseline by only a few percentage points.

Prior probabilities of booking and clicking for hotel properties were also ex-
amined and showed to provide powerful priors for ranking (see Fig. 5).

4 Data Preparation

4.1 Feature Engineering

From the literature review and exploratory data analysis a number of relevant
features were identified and incorporated into the feature set using the pandas
Python library. For one, in light of the feature analysis, a subset of the raw
numerical features were incorporated, which included the room price, review
score, star rating, its location scores, the brand flag, the promotion flag and
all competitor rates and search attributes. Categorical ID attributes were not
utilized as they were not found to provide discriminative information.

In addition to the raw numerical features, several composite features were
found to be predictive from the exploratory data analysis and literature review.
For one, as the hotel’s position within the search results was shown to be highly
predictive of whether it would be clicked or booked, the expected position of a
property was added to the feature set.7 For each hotel property in the training
set, the mean of the position in the training data was computed according to
Eq. 1 and used as a proxy for the hotel’s position in the search results:

h
(∗)
mean position =

1

|Ih|
∑
i∈Ih

h
(i)
position (1)

7 As positions of the properties within the search results were not provided for queries
in the competition test set, positions needed to be estimated from the training data.

On the Ranking of Expedia Search Results using LambdaMART 7

Here, h
(i)
f represents the value of feature f for hotel h in results list i and Ih

denotes the set of all result lists containing h. In addition to the mean, the
standard deviation of the position in the training set was computed for each
property as to represent the uncertainty in position. As a fraction of the search
results were ordered randomly and so would add noise to the estimates, care was
taken to exclude searches where the ordering was random (random bool = 1).

Furthermore, in light of the feature analysis, the prior probability of clicking
or booking a property was incorporated as well. These functioned as an indirect
quality estimate of the hotel impression and were derived as follows:

h
(j)
click prob = P (click|h) =

(∑
i∈Ih h

(i)
click bool

)
− h(j)click bool

|Ih| − 1
(2)

h
(j)
booking prob = P (booking|h) =

(∑
i∈Ih h

(i)
booking bool

)
− h(j)booking bool

|Ih| − 1
(3)

The current impression j is subtracted from the estimate as to not leak the

value of the target h
(j)
click bool into the feature set. As the obtained position and

probability estimates may be noisy or unstable, the number of previous search
results containing the hotel, |Ih| − 1, was added as a feature set as well.8

As mentioned in section 2.2, statistical features were key to achieving per-
formance for the top runners of the 2013 competition [3]. These features were
implemented for each property h as follows:

h
(∗)
statistic f = statistic({h(i)f | i ∈ Ih and h

(i)
f 6= NaN}) (4)

After experimenting with various statistics, the following were included: the
mean, median, standard deviation, minimum, maximum, quantile, sum and nor-
malized rank within the search. We ultimately computed feature statistics over
the following attributes:

visitor hist starrating
visitor hist adr usd
prop starrating
prop review score
prop brand bool
prop location score1
prop location score2

prop log historical price
price usd
orig destination distance
srch saturday night bool
srch length of stay
srch query affinity score
srch adults count

srch children count

srch room count

srch destination id

srch booking window

promotion flag

random bool

4.2 Outlier Removal and Imputation

As several feature types were implemented from continuous numerical features
to bounded probability estimates, different imputation strategies were necessary.
The base features and probability estimates were imputed with a default value

8 To indicate that some properties occurred only a small number of times, making the
position and probability estimates unstable.

8 Author et al.

of zero as this value was most intuitive. Statistical features were imputed with
-1 when undefined (e.g. mean of NaNs). The remaining features, including the
estimated position, were imputed with the average position in the training set.9

As the data contained considerable outliers in price (see Fig. 1), rows where
price usd > 1e4 were discarded. Contrary to previous solutions, down-sampling
of negative (no-click) records was found to cause overfitting; hence, no reduction
in the number of samples was performed beyond outlier removal.

5 Modeling and Evaluation

5.1 LambdaMART

As the problem of sorting hotel search results based on booking prospects is
inherently tied to the problem of ranking, a LambdaMART model was imple-
mented [18]. On a high level, LambdaMART is a boosted ensemble of regression
trees which can be used for optimising rankings with respect to LTR-specific
evaluation metrics such as NDCG. LambdaMART works in a pairwise fashion;
that is, it selects a pair of items (i, j) from the results list and computes for it a
gradient λij . This gradient, the so-called lambda, acts as a ’force’ which moves
the items in the pair up or down the results in opposing directions. By comput-
ing gradients λij proportional to their change in NDCG for every pair of items
in the result list and having the regression trees learn to model the lambdas, we
can then learn how to perform listwise ranking.10

The rationale for choosing LambdaMART over other ranking approaches is
its ability to take into account non-smooth loss functions in its optimization,
allowing it to directly optimize for our NDCG evaluation metric (see section
5.3). Moreover, an efficient implementation of the model was available through
the LightGBM package [10] and similar ensemble methods had shown in the
past to be successful in the competition (see Section 2.2).

The training data for LambdaMART was also easy to obtain as it only re-
quired the available data matrix of results to be grouped by search ID and a
corresponding list of relevance scores to be constructed (see section 5.3).

5.2 Stochastic Hill-Climbing Hyper-Parameter Optimization

The boosted trees underlying LambdaMART are highly parameterized allow-
ing the model to be further optimized by hyper-parameter tuning. To tune the
parameters, the data was randomly split up into mutually-exclusive training,
validation and test sets; here, 5% of search IDs were used for validation, 5%
for testing and the remaining 90% for training.11 On the training and validation

9 As features are assumed to be monotonic with the target, imputing with zero in the
position variable would mistakenly render all missing hotels to be ranked highly.

10 For a thorough description of LambdaMART, the reader is deferred to [2].
11 A fixed split was used as sufficient data was available and cross-validation was found

to be prohibitively expensive.

On the Ranking of Expedia Search Results using LambdaMART 9

Table 3. Hyper-parameters before and after optimization using SHC.

Parameter name Initial value Final value

Number of leaves 31 28

Number of estimators 100 866

Maximum tree depth 10 9

Feature fraction (for each tree) 1 0.927

Bagging fraction 1 0.958

Bagging frequency 1 18

sets, a stochastic hill-climbing (SHC) algorithm was then applied [15]; with SHC,
an initial guess is made for each hyper-parameter (i.e. the parameter defaults)
which are then incrementally improved upon by making small adjustments and
validating these adjustments on the validation set. As features varied in mag-
nitude, adjustments were uniformly sampled for each feature between zero and
10% of the current feature value. 50 iterations of SHC were performed.

This semi-directed optimization approach was used as the training time in-
creased exponentially with the number of estimators, prohibiting the use of an
exhaustive grid search. Also, non-directed alternatives such as random search
were deemed impractical as many hyper-parameters needed to be optimized.

For the gradient boosted trees, several parameter configurations were exam-
ined including variations in the number of leaves, number of estimators, bagging
fraction, bagging frequency, feature fraction and maximum tree depth (see Table
3). In the end, a model using 800 estimators, a bagging fraction of 0.95, a feature
fraction of 0.95 and a maximum tree depth of 23 was found to be optimal.

5.3 Evaluation Setup

In order to obtain a final evaluation score for the ranker, a final evaluation was
performed. After optimizing for hyperparameters using SHC, LambdaMART
was retrained on all available training and validation data and evaluated on the
5% held-out test set, containing approximately 240.000 records.

To evaluate the performance of our ranker the Normalized Discounted Cu-
mulative Gain (NDCG) metric was used. NDCG is a frequently used metric for
determining the consistency of rank for a set of search results [8]. It makes the
following assertions: results that are extremely important are more useful than
results that are relatively relevant, which are more useful than results that are
insignificant (cumulative gain).

The evaluation metric used in this competition was NDCG@5, that is the
NDCG restricted to the top 5 search results, averaged over all queries. For a
single query, NDCG@k is defined as follows:

NDCGk =
DCGk

IDCGk
∈ [0, 1], where DCGk =

k∑
i=1

reli

log2(i+ 1)

Here, reli is the relevance score assigned to the item with rank i and IDCGk is
the DCGk of the optimal ranking. The following relevance labels were used:

10 Author et al.

reli =


5 booking booli = 1

1 click booli = 1

0 otherwise

To quantify the importance of individual input feature according to the mod-
els, we compute two feature importance metrics; the number of splits made on
each feature and SHAP values [13, 14].

5.4 Final Model Description

In this section we briefly recap the final model used. The model was Lamb-
daMART implemented using LightGBM in Python. The model consisted of 866
boosting trees, each of which has a maximum depth of 9 and were trained on
92.7% of the features. In addition to boosting, the model employed bagging with
a bagging fraction of 0.958.

In line with the final evaluation, the optimization criterion was NDCG. To
obtain a final evaluation score, a model with the optimized parameter config-
uration was trained on all the available training data (95% of total data) and
tested on a held-out test set (see Evaluation).12 In addition, the final model was
evaluated on a public test set provided by the competition.

6 Results

6.1 Evaluation

Table 4 shows the NDCG@5 score of our final LambdaMART model. On the
public competition leaderboard the model obtained a score of 0.41726, equivalent
to second place in the competition.13 As can be seen from the obtained validation
scores, we were able to obtain a score around 0.38 using a subset of the raw input
features (described in section 4.1); however, only when additional composite
features (i.e. mean position, click/booking probabilities) and statistic features
were included were we able to obtain a score approaching 0.41.

Nonetheless, from table 4 it can be seen how the model overfits on the training
data; relative to the training NDCG score obtained, the performance of our
model drops off considerably on the validation and test data. However, when
training on all available training data, overfitting is reduced as reflected by the
improved performance on the test set relative to the validation set.14

Feature importances for our model are shown in Fig. 6 and 7. Although the
two importance methods shows slightly different results, they agree on many
of the important features. According to Fig. 6 the model stresses the impor-
tance of including the price of the accommodation and its prior clicking prob-
ability along with, to a lesser extent, the booking prob, price dispersion and

12 Care was taken to evaluate the model throughout only on the validation set.
13 Model predictions were submitted to an in-class competition leaderboard.
14 The model was trained on all available training data before the final evaluation.

On the Ranking of Expedia Search Results using LambdaMART 11

Table 4. Evaluation scores of the model for several feature subsets. The last row shows
the scores obtained for the final model with all features.

Model Training Validation Test
Leaderboard

(public test set)

Base features 0.42237 0.38287 - -

Base features
+ Position

0.43472 0.38893 - -

Base features
+ Position
+ Click/Booking probs

0.44964 0.39746 - -

Base features
+ Position
+ Click/Booking probs
+ Statistical features

0.48509 0.40946 0.41285 0.41726

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Split (%)

price_usd

price_usd_srch_normed

click_prob

median_price_usd

booking_prob

prop_location_score2

srch_booking_window

srch_price_dispersion

prop_mean_position2

week

prop_mean_position

prop_std_position

prop_log_historical_price

orig_destination_distance

prop_std_position2

hour

mean_price_usd

min_prop_location_score2

std_prop_log_historical_price

min_price_usd

Fig. 6. Feature split importance plot

1.5 1.0 0.5 0.0 0.5 1.0
SHAP value (impact on model output)

prop_log_historical_price

summ_prop_location_score2

std2_prop_location_score2

booking_prob

srch_query_affinity_score

median_prop_location_score2

mean_prop_location_score2

median_prop_log_historical_price

promotion_flag

prop_mean_position

prop_review_score

mean_price_usd

prop_mean_position2

random_bool

prop_starrating

click_prob

median_price_usd

price_usd_srch_normed

price_usd

prop_location_score2

Low

High

Fe
at

ur
e

va
lu

e

Fig. 7. SHAP summary plot

prop location score2. This is in line with previous findings showing these vari-
ables to either affect or reflect customer booking behavior (section 2.1 and 3.1).

In terms of the statistic features, the median and mean were found to be most
important according to Fig. 7; this was to be expected as previous approaches
utilized these features as well with great success. Also, the room price normalized
within search results (price usd srch normed), showed to bear importance.

6.2 Discussion

Feature engineering was found to be an important part of our solution (see Fig.
4). We manually created many varieties of features covering an expectation of the
position, price features and click and booking probabilities. We also grouped nu-
merical features by property ID and calculated various summary statistics from
it to be used as features. Previous solutions from the competition solely consid-
ered the mean, median and standard deviation of the numerical features grouped
by property ID; we expanded upon this by grouping the data by more ID vari-

12 Author et al.

ables (i.e. country id) and considering quantile, rank, minimum and maximum.
However, there remains space for improvement in terms of encoding categorical
variables; in the current work, these were not considered.

As for imputing missing values, we followed the approach suggested by the
winning contestants of the original competition by filling these values with either
zero, a negative value or the mean, depending on the variable type, which yielded
reasonable results. What we could have improved on is to try to impute missing
values using a modeling approach, as opposed to defaulting to predefined values.

In addition, it was of critical importance to determine what target we wanted
to predict. In our case, we had two options, booking bool and click bool, both of
which were relevant to the task at hand. By combining these variables into
a single relevance variable and optimizing for relevance directly using Lamb-
daMART we mitigated this issue. However, as LambdaMART has been around
for a while, one can imagine how results could improve when using more con-
temporary models. Researchers have recently developed new strategies dubbed
”unbiased learning-to-rank” that use click data to remove location bias and train
a relatively high-performance ranker. For instance, Unbiased LambdaMART [7]
is an example of a ”unbiased learning-to-rank” algorithm that effectively ”debi-
ases” click data and improves relevance rankings.

Lastly, in the initial stages of development we attempted down-sampling of
negative, no-click instances as to improve training times; however, we abandoned
this idea due to the fact that it resulted in severe overfitting issues. In the future,
it could be worthwhile to further validate whether down-sampling may possibly
improve performance or how to build a model that gives faster training times
without negatively affecting performance. Furthermore, techniques such as model
ensembling may be implemented to improve results.

6.3 What We Learned

In this competition, we were faced with a problem and evaluation metric that
were related to the problem of ranking; a problem which some of us were inex-
perienced with. However, we found it very rewarding to have our score on the
leaderboard at the end of the day to motivate us to improve further.

The most important lesson learnt from the competition is that “great oaks
from little acorns grow”; that is, it is important to start small and build up
more complex systems step-by-step. When you keep track of the changes made,
it enables you to spot small errors along the way and so diagnose what goes
wrong more quickly. Other lessons learnt from this competition were that it is
often beneficial to investigate prior solutions to (similar) problems as to not
reinvent the wheel, and that it can be useful to examine multiple approaches
concurrently in order to identify which is most suitable to the problem at hand.

Lastly, we realized the importance of making use of the online community. We
have benefited a lot from using the Kaggle community where people discussed
new algorithms, modeling approaches and their pitfalls. Overall, we enjoyed the
challenges posed by the competition and feel like we have gained more data
mining experience, because of it.

On the Ranking of Expedia Search Results using LambdaMART 13

References

1. Presentations of the icdm ’13 workshop. ”https://storage.googleapis.com/kaggle-
competitions/kaggle/3504/media/ICDM2013 Presentations 2013-12-08.zip”
(2013)

2. Burges, C.J.: From ranknet to lambdarank to lambdamart: An overview. Learning
11(23-581), 81 (2010)

3. Dang, V.: The lemur project-wiki-ranklib. Lemur Project (2012)
4. Dolnicar, S., Otter, T.: Which hotel attributes matter? a review of previous and a

framework for future research (2003)
5. Geng, X., Liu, T.Y., Qin, T., Li, H.: Feature selection for ranking. In: Proceed-

ings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval. pp. 407–414 (2007)

6. Ghose, A., Ipeirotis, P.G., Li, B.: Examining the impact of ranking on consumer
behavior and search engine revenue. Management Science 60(7), 1632–1654 (2014)

7. Hu, Z., Wang, Y., Peng, Q., Li, H.: Unbiased lambdamart: An unbiased pairwise
learning-to-rank algorithm (2019)

8. Järvelin, K., Kekäläinen, J.: Ir evaluation methods for retrieving highly relevant
documents. In: ACM SIGIR Forum. vol. 51, pp. 243–250. ACM New York, NY,
USA (2017)

9. Jiang, X., Xiao, Y., Li, S.: Personalized expedia hotel searches (2013)
10. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.:

Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems 30, 3146–3154 (2017)

11. Liu, J.N., Zhang, E.Y.: An investigation of factors affecting customer selection of
online hotel booking channels. International Journal of Hospitality Management
39, 71–83 (2014)

12. Liu, X., Xu, B., Yuyu, Z., Yan, Q., Pang, L., Li, Q., Sun, H., Wang, B.: Combination
of diverse ranking models for personalized expedia hotel searches (11 2013)

13. Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions. arXiv
preprint arXiv:1705.07874 (2017)

14. Lundberg, S.M., Erion, G.G., Lee, S.I.: Consistent individualized feature attribu-
tion for tree ensembles. arXiv preprint arXiv:1802.03888 (2018)

15. Panichella, A.: A systematic comparison of search-based approaches for lda hyper-
parameter tuning. Information and Software Technology 130, 106411 (2021)

16. Talwar, S., Dhir, A., Kaur, P., Mäntymäki, M.: Why do people purchase from online
travel agencies (otas)? a consumption values perspective. International Journal of
Hospitality Management 88, 102534 (2020)

17. Wind, D., Winther, O.: Concepts in predictive machine learning (2014)
18. Wu, Q., Burges, C.J., Svore, K.M., Gao, J.: Ranking, boosting, and model adap-

tation. Tech. rep., Technical report, Microsoft Research (2008)

